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Abstract
The Jordan–Wigner fermionization for the one-dimensional Bariev model of
three coupled XY chains is formulated. The L-matrix in terms of fermion
operators and the R-matrix are presented explicitly. Furthermore, the graded
reflection equations and their solutions are discussed.

PACS numbers: 05.50.+q, 71.10.Fd, 71.27.+a, 75.10.−b

It is well known that the Jordan–Wigner transformation is generally used to convert spin
models into fermion models, or vice versa, in condensed matter physics. Successfully applied
by Olmedilla et al [1] to the one-dimensional (1D) Hubbard model, the Jordan–Wigner
transformation led to a better understanding of this model in the framework of the quantum
inverse scattering method (QISM) [2, 3]. However, its generalization to an arbitrary number
of internal degrees of freedom is not easy due to the cumbersome calculations involved. In
this context, a general scheme is also proposed by Göhmann and Murakami [4] to treat the
fermionization of integrable lattice systems, which was directly applied to some fundamental
models, such as the XYZ spin chain, etc (see also [5]). Recently, another generalization of
the Jordan–Wigner transformation was proposed by Batista and Ortiz [6] to convert spin-S
operators of the SU(2) algebra into fermion operators. Although it reveals a new insight into
the integrable models of strongly correlated electrons, it can also be applied to higher spin
representation. In spite of all this progress in the fermionization of spin chains, some important
systems, such as the three coupled XY chains [7, 8] still lack comprehensive investigation by
means of the graded QISM. In this paper, we generalize the Jordan–Wigner transformation
[1, 9, 10] to the 1D Bariev model of three coupled XY chains [7, 8, 11], which possesses
three internal degrees of freedom. The model has finite magnetization on the ground state in
the zero external fields and exhibits the existence of hole pairs of the Cooper type which are
relevant to theories of superconductors [11]. We convert the three coupled XY chains into
a fermion model of strongly correlated electrons. The graded Yang–Baxter relation and the
graded reflection equations, which guarantee the integrability of the model in the bulk and at
the boundaries, respectively, are formulated in the framework of the QISM. The first conserved
current next to the Hamiltonian and the boundary conditions in terms of fermion operators
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are constructed. Our results facilitate the algebraic Bethe ansatz [12] for the fermion model
with periodic and open boundary conditions, which provides the spectrum of all conserved
charges, essential for studying finite temperature properties of the integrable models.

We begin by considering a spin chain model defined by the following Hamiltonian

H =
L∑
j=1

Hj,j+1 (1)

where Hj,j+1 denotes the Hamiltonian density of three XY spin chains coupled to each other
[8] as

Hj,j+1 =
3∑

α=1

(
σ +
j (α)σ

−
j+1(α) + σ−

j (α)σ
+
j+1(α)

)
exp


η∑

α′ �=α
σ +
j+θ(α′−α)(α′)σ

−
j+θ(α′−α)(α′)


 (2)

where σ±
j (α) = 1

2

(
σxj (α) ± iσyj (α)

)
, with σxj (α), σ

y

j (α) and σ zj (α) being the usual Pauli spin

operators at site j corresponding to the αth (α = 1, 2, 3) XY spin chain, θ(α′ − α) is a
step function of (α′ − α) and η is a coupling constant. As is shown in [8], the Hamiltonian
commutes with a one-parameter family of transfer matrix τ (u) of a two-dimensional lattice
statistical mechanics model. This transfer matrix is the trace of a monodromy matrix T(u),
which is defined, as usual, by

T (u) = L0N(u) · · ·L01(u) (3)

with L0j (u) of the form

L0j (u) = L
(1)
0j (u)L

(2)
0j (u)L

(3)
0j (u) (4)

where

L
(α)

0j (u) = 1

2

(
1 + σ zj (α)σ

z
0(α)

)
+

1

2
u
(

1 − σ zj (α)σ
z
0(α)

)
exp


η

3∑
α′=1
α′ �=α

σ +
0(α′)σ

−
0(α′)




+
(
σ−
j (α)σ

+
0(α) + σ +

j (α)σ
−
0(α)

)
√√√√√√√1 + exp


2η

3∑
α′=1
α′ �=α

σ +
0(α′)σ

−
0(α′)


u2. (5)

The explicit form of the corresponding R-matrix is given in [8].
Now let us introduce the following Jordan–Wigner transformation for a model with three

degrees of freedom(
σ +
j (α)

σ−
j (α)

)
= [

Vj(α)
]2

(
c
†
j (α)

cj (α)

)
σ zj (α) = 2nj(α) − 1 (6)

where

Vj(α) =
(
vj(α) 0

0 v−1
j (α)

)
(7)

with

vj(1) = exp

(
1

2
iπ

j−1∑
i=1

c
†
i(1)ci(1)

)
(8)
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vj(2) = exp

(
1

2
iπ

L∑
i=1

c
†
i(1)ci(1)

)
exp

(
1

2
iπ

j−1∑
i=1

c
†
i(2)ci(2)

)
(9)

vj(3) = exp

(
1

2
iπ

L∑
i=1

c
†
i(1)ci(1)

)
exp

(
1

2
iπ

L∑
i=1

c
†
i(2)ci(2)

)
exp

(
1

2
iπ

j−1∑
i=1

c
†
i(3)ci(3)

)
. (10)

Here c†j (α) and cj (α) are creation and annihilation operators with colour index α (α = 1, 2, 3)

satisfying the anti-commutation relations and nj(α) = c
†
j (α)cj (α) is the density operator. Under

such transformation, one may obtain the Hamiltonian of a fermionic model which is equivalent
to the model (1)

Hj,j+1 =
3∑

α=1

(
c
†
j (α)cj+1(α) + c†j+1(α)cj (α)

)
exp

[
η
∑
α′ �=α

nj+θ(α′−α)(α′)

]
(11)

describing fermions hopping along a lattice with strong correlations determined by the
occupation numbers of the fermions with different colours. In order to apply the QISM
approach, let us now connect the fermion model (11) with an L-matrix which realizes the
graded Yang–Baxter relation. For this purpose, let us first define the matrix

Vj = Vj(1) ⊗ Vj(2) ⊗ Vj(3). (12)

Then the fermionic L-matrix L(u) can be presented as

L0j (u) = Vj+1L0j (u)V
−1
j . (13)

After a lengthy algebra, we may write the fermionic L-matrix in the following way

L0j (u) = L(1)0j (u)L
(2)
0j (u)L

(3)
0j (u) (14)

where

L(1)0j (u) =




g+
j (1) 0 0 0 −f 2

1 cj (1) 0 0 0
0 g̃+

j (1) 0 0 0 f1f2cj (1) 0 0
0 0 g̃+

j (1) 0 0 0 f1f2cj (1) 0

0 0 0 ˜̃g+
j (1) 0 0 0 −f 2

2 cj (1)

if 2
1 c

†
j (1) 0 0 0 g−

j (1) 0 0 0

0 −if1f2c
†
j (1) 0 0 0 g̃−

j (1) 0 0

0 0 −if1f2c
†
j (1) 0 0 0 g̃−

j (1) 0

0 0 0 if 2
2 c

†
j (1) 0 0 0 ˜̃g−

j (1)




L(2)0j (u) =




g+
j (2) 0 −if 2

1 cj (2) 0 0 0 0 0
0 g̃+

j (2) 0 if1f2cj (2) 0 0 0 0

f 2
1 c

†
j (2) 0 g−

j (2) 0 0 0 0 0

0 −f1f2c
†
j (2) 0 g̃−

j (2) 0 0 0 0
0 0 0 0 g̃+

j (2) 0 −if1f2cj (2) 0

0 0 0 0 0 ˜̃g+
j (2) 0 if 2

2 cj (2)

0 0 0 0 f1f2c
†
j (2) 0 g̃−

j (2) 0

0 0 0 0 0 −f 2
2 c

†
j (2) 0 ˜̃g−

j (2)




L(3)0j (u) =




g+
j (3) f 2

1 cj (3) 0 0 0 0 0 0

−if 2
1 c

†
j (3) g−

j (3) 0 0 0 0 0 0
0 0 g̃+

j (3) f1f2cj (3) 0 0 0 0

0 0 −if1f2c
†
j (3) g̃−

j (3) 0 0 0 0
0 0 0 0 g̃+

j (3) f1f2cj (3) 0 0

0 0 0 0 −if1f2c
†
j (3) g̃−

j (3) 0 0

0 0 0 0 0 0 ˜̃g+
j (3) f 2

2 cj (3)

0 0 0 0 0 0 −if 2
2 c

†
j (3)

˜̃g−
j (3)



.



9360 X-W Guan et al

Above we have introduced the notation

g+
j (α) = u exp(2η) + (i − u exp(2η))nj(α) g̃+

j (α) = u exp(η) + (i − u exp(η))nj(α)

˜̃g+
j (α) = u + (i − u)nj(α) g−

j (α) = 1 − (1 + iu exp(2η))nj(α)

g̃−
j (α) = 1 − (1 + iu exp(η))nj(α) ˜̃g−

j (α) = 1 − (1 + iu)nj(α)

f1 =
√

1 + u2 exp(2η) f2 =
√

1 + u2.

After sophisticated algebra, indeed, we can incorporate the fermionic L-matrix (14) into the
graded Yang–Baxter relation

R(u, v)L0j (u)⊗s L0j (v) = L0j (v)⊗s L0j (u)R(u, v) (15)

which is essential to the integrability of the model (11). The fermion version of the R-matrix
comprises

R(u, v) = W · R(u, v) ·W−1 (16)

whereW is a 64 × 64 diagonal matrix given by

W =
(

1 0
0 i

)
⊗M ⊗

(
1 0
0 1

)
(17)

with M = diag {1,−i,−1, i,−i, 1,−i, 1,−1, i,−1, i, i,−1,−i, 1}. R(u, v) stands for the
R-matrix for the spin model (2), which is presented in [8]. In (15) above, ⊗s denotes the
graded tensor product

[A⊗s B]αβ,γ δ = (−1)[P (α)+P (γ )]P (β)Aαγ Bβδ (18)

with the Grassmann parities obeying the grading P(1) = P(4) = P(6) = P(7) = 0 and
P(2) = P(3) = P(5) = P(8) = 1. We would like to stress that the grading and the
W -matrix are uniquely defined by the Jordan–Wigner transformation, only if the Jordan–
Wigner transformation is used in the specific way of equation (6). However, one can see that
the grading coincides with the choice of the bosonic and fermionic degrees of freedom as the
up-spin is referred to as a bosonic degree of freedom, whereas down-spin is the fermionic
degree of freedom on the basis of the auxiliary space V (∼= C2 ⊗ C2 ⊗ C2) as

e1 = | ↑↑↑〉 e2 = | ↑↑↓〉 e3 = | ↑↓↑〉 e4 = | ↑↓↓〉
e5 = | ↓↑↑〉 e6 = | ↓↑↓〉 e7 = | ↓↓↑〉 e8 = | ↓↓↓〉.

This means that e1, e4, e6 and e7 are even, whereas e2, e3, e5 and e8 are odd. It follows that

R(u, v)T (u)⊗s T (v) = T (v)⊗s T (u)R(u, v) (19)

where T (u) is the monodromy matrix

T (u) = L0L(u) · · ·L0L(u). (20)

The graded Yang–Baxter algebra (19) ensures the commutativity of the transfer matrix
τ (u) = Str T (u) for different spectral parameters, i.e. [τ (u), τ (v)] = 0. This implies that
τ (u) can be viewed as a generating function of an infinite number of commuting conserved
currents, which may be obtained through the expansion of the τ (u) in powers of u

ln τ (u) = ln τ (0) +H u + 1
2J u

2 + · · · (21)
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where J is the first non-trivial conserved current next to the Hamiltonian

(−i)J =
L∑
j=1

{
3∑

α=1

(
c
†
j+1(α)cj−1(α) − c

†
j−1(α)cj+1(α)

)

× exp

(
η
∑
α′ �=α

nj+θ(α′−α)(α′)

)
exp

(
η
∑
α′ �=α

nj−1+θ(α′−α)(α′)

)

− expη sinh η
3∑

α<β

[(
c
†
j−1(α)cj (α) − c

†
j (α)cj−1(α)

) (
c
†
j (β)cj+1(β) + c†j+1(β)cj (β)

)

+
(
c
†
j−1(α)cj (α) + c†j (α)cj−1(α)

) (
c
†
j (β)cj+1(β) − c

†
j+1(β)cj (β)

)]

× exp

(
η
∑
α′ �=α,β

nj−1+θ(α′−α)(α′)

)
exp

(
η
∑
β ′ �=α,β

nj+θ(β ′−β)(β ′)

)

− expη sinh η
3∑

α<β

[(
c
†
j (α)cj+1(α) + c†j+1(α)cj (α)

) (
c
†
j (β)cj+1(β) − c

†
j+1(β)cj (β)

)

+
(
c
†
j (α)cj+1(α) − c

†
j (α)cj−1(α)

) (
c
†
j (β)cj+1(β) + c†j+1(β)cj (β)

)]

× exp

(
η
∑
α′ �=α,β

nj+θ(α′−α)(α′)

)
exp

(
η
∑
β ′ �=α,β

nj+θ(β ′−β)(β ′)

)}
. (22)

Therefore, we have built up an important ingredient towards the QISM approach for the
model. Next, we shall discuss the integrable boundary conditions for the fermion model with
the Hamiltonian density (11). The boundary conditions are known to be useful for studying
conductivity properties in such non-fermion liquids (see, e.g., [13, 14]). The open boundary
conditions for the spin model (2) were studied in [15, 16]. Now we show that the fermion
version of R satisfies the following graded reflection equations

R12(u, v)
1
K− (u)R21(v,−u)

2
K− (v) =

2
K− (v)R12(u,−v)

1
K− (u)R21(−v,−u) (23)

RSt1St2
21 (v, u)

1

KSt1
+ (u)R̃12(−u, v)

2

KSt2
+ (v) =

2

KSt2
+ (v)R̃21(−v, u)

1

KSt1
+ (u)RSt1St2

12 (−u,−v)
(24)

using the conventional notation
1
X≡ X ⊗s IV2

2
X≡ IV1 ⊗s X (25)

where IV denotes the identity operator on V , and, as usual, R12 = P ·R and R21 = P ·R12 ·P .
Here P is the graded permutation operator which can be represented by a 64 × 64 matrix, i.e.

Pαβ,γ δ = (−1)P (α)P (β)δαδδβγ . (26)

Furthermore, superscripts Sta and Sta denote the supertransposition in the space with index a
and its inverse, respectively

(Aij )
St = (−1)[P (i)+P (j)]P (i)Aji (Aij )

St = (−1)[P (i)+P (j)]P (j)Aji. (27)

The graded reflection equations (23) and (24) together with the graded Yang–Baxter algebra
(19) and the following properties

R12(u, v)R21(v, u) = 1 (28)
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R̃St1
21 (−v, u)RSt2

12 (u,−v) = 1 (29)

R̃St2
12 (−u, v)RSt1

21 (v,−u) = 1 (30)

assure that the double-row transfer matrix

τ (u) = Str0 K+(u)T (u)K−(u)T −1(−u) (31)

commutes for different spectral parameters, proving the integrability of the model with open
boundary conditions. After a lengthy calculation, we find that the left boundaryK−(u)-matrix
is given by

K
(m)
− (u) = 1

λ−




A−(u) 0 0 0 0 0 0 0
0 B−(u) 0 0 0 0 0 0
0 0 C−(u) 0 0 0 0 0
0 0 0 D−(u) 0 0 0 0
0 0 0 0 E−(u) 0 0 0
0 0 0 0 0 F−(u) 0 0
0 0 0 0 0 0 G−(u) 0
0 0 0 0 0 0 0 H−(u)




(32)

where for m = 1 we have

A−(u) = (c− + u)
(
e2ηc− + u

) (
e4ηc− + u

)
B−(u) = (c− − u)

(
e2ηc− + u

) (
e4ηc− + u

)
C−(u) = (c− − u)

(
e2ηc− + u

) (
e4ηc− + u

)
D−(u) = (c− − u)

(
e2ηc− − u

) (
e4ηc− + u

)
E−(u) = (c− − u)

(
e2ηc− + u

) (
e4ηc− + u

)
F−(u) = (c− − u)

(
e2ηc− − u

) (
e4ηc− + u

)
G−(u) = (c− − u)

(
e2ηc− − u

) (
e4ηc− + u

)
H−(u) = (c− − u)

(
e2ηc− − u

) (
e4ηc− − u

)
λ− = 1

e6ηc3−

while, for m = 2

A−(u) = E−(u) = (c− + u)
(
c− + e2ηu

)
B−(u) = C−(u) = F−(u) = G−(u) = (c− + u)

(
c− − e2ηu

)
D−(u) = H−(u) = (c− − u)

(
c− − e2η)

λ− = 1

c2−

and for m = 3

A−(u) = C−(u) = E−(u) = G−(u) = (c− + u)

B−(u) = D−(u) = F−(u) = H−(u) = (c− − u)

λ− = 1

c−
.
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These results coincide with those obtained for the spin model studied in [16]. However, its
companion, right boundaryK+(u)-matrix is given by

K(l)
+ (u) =




A+(u) 0 0 0 0 0 0 0
0 B+(u) 0 0 0 0 0 0
0 0 C+(u) 0 0 0 0 0
0 0 0 D+(u) 0 0 0 0
0 0 0 0 E+(u) 0 0 0
0 0 0 0 0 F+(u) 0 0
0 0 0 0 0 0 G+(u) 0
0 0 0 0 0 0 0 H+(u)




(33)

where for l = 1, we have

A+(u) = (
e6ηc+u− 1

) (
e4ηc+u− 1

) (
e2ηc+u− 1

)
B+(u) = −e4η (e2ηc+u + 1

) (
e4ηc+u− 1

) (
e2ηc+u− 1

)
C+(u) = −e2η (e2ηc+u + 1

) (
e4ηc+u− 1

) (
e2ηc+u− 1

)
D+(u) = e6η

(
e2ηc+u + 1

)
(c+u + 1)

(
e2ηc+u− 1

)
E+(u) = −(e2ηc+u + 1

) (
e4ηc+u− 1

) (
e2ηc+u− 1

)
F+(u) = e4η(c+u + 1)

(
e2ηc+u + 1

) (
e2ηc+u− 1

)
G+(u) = e2η(c+u + 1)

(
e2ηc+u + 1

) (
e2ηc+u− 1

)
H+(u) = −e4η (c+u + e2η) (c+u + 1)

(
e2ηc+u + 1

)
while for l = 2

A+(u) = −B+(u) = (
e6ηc+u− 1

) (
e4ηc+u− 1

)
C+(u) = −D+(u) = −e2η

(
e2ηc+u + 1

) (
e4ηc+u− 1

)
E+(u) = −F+(u) = −(e2ηc+u + 1

) (
e4ηc+u− 1

)
G+(u) = −H+(u) = e2η(c+u + 1)

(
e2ηc+u + 1

)
and for l = 3

A+(u) = −B+(u) = e2η
(
e4ηc+u− 1

)
C+(u) = −D+(u) = − (

e4ηc+u− 1
)

E+(u) = −F+(u) = −e2η(c+u + 1)

G+(u) = −H+(u) = (c+u + 1).

The above matrix is different from that in the non-graded case. Thus, the graded reflection
equations (23) and (24) warrant the following boundary terms to be integrable

B
(m)
1 =




1

c− exp(2η)

[
exp(−2η)

3∑
α=1

n1(α) + 2 exp(−η) sinh η
3∑

α,β=1
α �=β

n1(α)n1(β)

+ 4 sinh2 η n1(1)n1(2)n1(3)

]
for m = 1

exp(η)

c−

[
exp(−η)

3∑
α=2

n1(α) + 2 sinhηn1(2)n1(3)

]
for m = 2

1

c−
n1(3) for m = 3

(34)
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B
(l)
L =




1

c+

[
exp(−2η)

3∑
α=1

nL(α) + 2 exp(−η) sinh η
3∑

α,β=1
α �=β

nL(α)nL(β)

+ 4 sinh2 η nL(1)n1(2)nL(3)

]
for l = 1

1

c+ exp(η)

[
exp(−η)

2∑
α=1

nL(α) + 2 sinh ηnL(1)nL(2)

]
for l = 2

1

c+
nL(1) for l = 3

(35)

where c± are the parameters describing the boundary effects. With the different choices of the
pair (m, l ) (m, l = 1, 2, 3), there exist nine classes of integrable boundary terms compatible
with the integrability of model (11).

So far, we have performed the fermionization of the one-dimensional Bariev model
of three coupled XY chains. By verifying the graded Yang–Baxter relation, the fermionic
L-matrix and R-matrix are derived explicitly. Further, the integrable boundary conditions for
the fermion model are discussed. We would like to mention that the fermionization scheme
proposed in [4, 5] also appears possible to be adopted here through the use of the fusion
procedure in the identification of the local Hamiltonians [17]. Our result provides a good
starting point towards the algebraic Bethe ansatz for the model with both periodic and open
boundary conditions by means of the graded QISM, which will probably be a hard task.
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